亚洲 欧美 激情 小说 另类,性欧美丰满熟妇XXXX性久久久,欧美丰满一区二区免费视频,欧美成人午夜无码A片秀色直播,欧美疯狂做受BBBBBB,成人欧美一区二区三区黑人免费,久久夜色精品国产欧美乱极品,欧美性猛交,欧美乱妇日本无乱码特黄大片,高清欧美性猛交XXXX黑人猛交,欧美啪啪

密碼子優(yōu)化(Codon optimization)

在蛋白質(zhì)合成過程中,密碼子扮演著將基因信息翻譯為蛋白序列信息的重要角色。

不同的物種翻譯同樣一個(gè)氨基酸可能使用不同的密碼子,并且因物種不同而帶有密碼子偏好性。盡管目前尚未得知密碼子偏好性的自然形成的原因,但是這種現(xiàn)象對(duì)于蛋白表達(dá)效率的影響是顯著的。對(duì)于重組蛋白表達(dá),為獲得最佳表達(dá)效果,通常需要根據(jù)物種的密碼子偏好性進(jìn)行序列優(yōu)化。特別是使用異源性的蛋白質(zhì)表達(dá)系統(tǒng)時(shí),由于來源于另一物種的目的基因需要在自然條件下不表達(dá)該基因的宿主中進(jìn)行重組蛋白表達(dá),這種優(yōu)化因此顯得更為重要。除此以外,密碼子優(yōu)化還具有其它應(yīng)用,比如通過優(yōu)化CG含量和重復(fù)序列區(qū)域以改善DNA克隆效率。密碼子優(yōu)化還應(yīng)用在改善mRNA穩(wěn)定性,增強(qiáng)轉(zhuǎn)錄和翻譯效率等方面。

載體家密碼子優(yōu)化工具專為在特定物種中的目的基因表達(dá)而設(shè)計(jì),并提供在特定物種中目的基因的最佳密碼子適應(yīng)指數(shù)(Codon Adaptation Index,CAI)。該工具包含一個(gè)全面的物種列表,同時(shí)無縫銜接我們的線上載體設(shè)計(jì)平臺(tái),有助您在設(shè)計(jì)載體時(shí)即可完成密碼子優(yōu)化。此外,該工具還提供不同的內(nèi)切酶選項(xiàng)以規(guī)避優(yōu)化后可能產(chǎn)生的酶切位點(diǎn)。我們的密碼子優(yōu)化工具還可以對(duì)高GC含量和簡單重復(fù)序列等問題進(jìn)行優(yōu)化,最大程度滿足基因合成和DNA克隆等應(yīng)用需求。

以下各圖展現(xiàn)了我們的密碼子優(yōu)化工具的多個(gè)功能。

1. 根據(jù)物種類型優(yōu)化密碼子序列View more

圖1展示了對(duì)粉紋夜蛾(Trichoplusia ni)的piggyBac轉(zhuǎn)座酶的密碼子人源化優(yōu)化的結(jié)果。最終的優(yōu)化序列的CAI值為0.93,優(yōu)化前該值為0.63。某個(gè)物種對(duì)應(yīng)的CAI值量化的是該物種中高表達(dá)的基因所偏向使用的密碼子類型的頻率。CAI值范圍為0至1。目的基因的高CAI值意味著在該物種可以被更有效表達(dá)。

圖1 使用載體密碼子優(yōu)化工具針對(duì)特定物種優(yōu)化的基因序列

2. 針對(duì)高GC含量序列進(jìn)行優(yōu)化View more

圖2展示了小鼠Hoxa4基因的GC含量優(yōu)化結(jié)果。使用我們的密碼子優(yōu)化過工具后,Hoxa4基因的GC含量從69.3%降至59.5%。對(duì)于基因克隆時(shí)需要合成的基因序列,最佳的GC含量應(yīng)在60%左右,以增加基因合成成功的機(jī)率。

圖2 使用載體家密碼子優(yōu)化工具降低高GC含量

3. 針對(duì)重復(fù)序列區(qū)域進(jìn)行優(yōu)化View more

圖3展示了人免疫球蛋白序列自我比對(duì)的點(diǎn)陣圖(Dot plot)。優(yōu)化前點(diǎn)陣圖中顯著的對(duì)角斜線表明該基因包含大量的重復(fù)序列區(qū)域。優(yōu)化后的點(diǎn)陣圖中對(duì)角線圖案消減,表明重復(fù)序列大為減少。

圖3 使用載體家密碼子優(yōu)化工具減少重復(fù)序列區(qū)域

Codon Optimization Tool Crash Course Tips

Protein production

In order to produce proteins, a cell must first translate the relevant mRNA strand. Following transcription, the mRNA exits the nucleus where each group of three nucleotides is matched to a tRNA molecule carrying an amino acid (Figure 1A). These groups of 3 nucleotides are codons, and each corresponds to an amino acid. Because there are only 20 amino acids and many more possible combinations of nucleotides, there is redundancy in this code (Figure 1B).

Figure1AFigure1B

Figure 1. Formation of a protein through transcription and translation (A) of codons. Each codon corresponds to an amino acid or direction (start/stop).

Codon bias

Although there are multiple options for making each amino acid, their usage is not based on chance. This is because each species exhibits codon bias, the preference for making an amino acid with a certain codon. For instance, alanine (Ala) is coded by GCU, GCC, GCA, and GCG (Figure 1B), but in humans, GCC is used about 40% of the time. Different organisms have different codon preferences, which influences RNA processing and therefore protein folding and function. This creates complications when expressing one gene in another organism, i.e. heterologous gene expression.

The Codon Adaptation Index (CAI) is a measure of how well given codons match with the biases of an organism, ranging from 0 to 1. A CAI of 1 reflects a coding sequence where all amino acids reflect the most frequently used codons in that organism. Our Codon Optimization tool presents a sequence that balances an optimal CAI with other factors that can influence molecular experiments.

Enhancing cloning efficiency

Codon optimization can also aid in increasing cloning efficiency based on the distribution of nucleotides across the sequence. GC content is an important variable to consider when designing and troubleshooting experiments. If GC content is too high or too low, stability of the query sequence is negatively affected. Our GC Content Calculator tool allows for independent GC analysis over an entire sequence and within segments of a sequence. However, our Codon Optimization tool incorporates this analysis to optimize this variable by finding synonymous codons that increase or decrease GC content as needed.

Additionally, sequences that have a high frequency of repeats can present complications in cloning efforts due to the lack of unique primer binding sites, and sequences with recognition sites for restriction enzymes can present challenges in experimental design. Using our Codon Optimization tool allows for all of these factors to be optimized in unison with codon bias to provide a sequence that is most likely to efficiently produce your protein in your system.

  • Sequences in both GenBank and FASTA formats can be recognized.
  • You can input a DNA/RNA sequence or protein sequence.
  • DNA/RNA sequences must begin with start codon ATG and must be in a multiple of 3 for a complete codon sequence.
點(diǎn)擊查看最新促銷活動(dòng)信息